Abstract

Faba bean is an important pulse crop in terms of protein source, area coverage, and volume of annual production in Ethiopia. The aim of this paper is to assess the agronomic and crop physiology investigations in the past two decades in Ethiopia. The production limiting factors of this crop are low input usage, natural disasters, depletion of macronutrients, and unavailability of essential nutrients. Phosphorus is among the main limiting nutrients in soil systems in Ethiopia. Seed yield and biomass yield of faba bean were increased from 1338 to 1974 kg/ha and from 3124 to 4446 kg/ha when phosphorous was changed from 0 to 52 kg/ha, respectively at Holeta whereas application of 40 kg P ha − 1 resulted in higher grain yield (6323 kg ha−1) and 3303 kg ha−1 at Lemu-Bilbilo and Bore highlands, respectively. The highest grain yield of 32 kg ha−1 was obtained from the application of 92 kg P2O5 ha−1 at Sekela district while application of 46 kg P2O5 ha−1 resulted in a substantial increase in seed yield over unfertilized plots on vertisols of Ambo. On the other hand, the results suggest that using starter nitrogen from 0 to 27 kg/ha has marginally increased faba bean yield but, a farther increase of nitrogen has indicated deteriorate of yield at Arsi zone. Proper plant populations play a crucial role in enhancing faba bean production. Planting faba bean at 30 cm × 15 cm spacing gave the highest grain yield in Duna district while it was 30 × 7.5 cm at vertisols of Ambo University research farm. Significantly higher seed yield (4222 kg/ha) was observed in the 40 cm inter-row spacing as compared to 50 cm inter-row spacing, which gave the lowest seed yield per hectare (3138 kg/ha) on fluvisols of Haramaya University. Intercropping and crop rotation are cropping systems that can increase soil fertility and crop yield. Intercropping of faba bean with barley at Debre Birhan increased land equivalent ratio than both crops when planted as sole. An additional income of 18.5% and 40% was gained than planting sole faba bean and wheat, respectively at Kulumsa. Faba bean can fix about 69 kg/ha nitrogen in Northern Ethiopia. Generally, the current review results showed that only limited studies in organic and bio fertilizer, plant density, and cropping systems were done on faba bean in Ethiopia. Hence, studies regarding soil acidity, organic fertilizer, and secondary plus micronutrient impacts on faba bean production and productivity along soil types and weather conditions need great attention in the future in Ethiopia.

Highlights

  • Faba bean (Vicia faba L.) is an important legume crop that contains a high protein amounting to 33% and is consumed worldwide as protein source by humans [1]

  • The research conducted on phosphorus fertilizer rate at Bore Highlands, Guji Zone revealed that application of 40 kg P ha−1 resulted in the highest plant height of faba bean which was significantly higher by 11.8% than the unfertilized and gave the highest nodule dry weight (170.90 mg/plant) and seed yield (3303.0 kg ha−1), but the faba bean plant height difference between 10, 20, 30 and 40 kg P ha−1, as well as seed yield difference between 30 and 40 kg ha−1 P rate, were statistically the same (Table 1)

  • The outcomes of this review revealed that faba bean yield showed an increasing trend as a result of technology improvements by different researchers

Read more

Summary

Introduction

Faba bean (Vicia faba L.) is an important legume crop that contains a high protein amounting to 33% and is consumed worldwide as protein source by humans [1]. Faba bean is an important pulse crop in terms of area coverage and volume of annual production in Ethiopia [8]. The annual area coverage of the crop in Ethiopia is 492,271.60 hectares with a total production and productivity of 1.04 million tons and 2.1 tons/ha respectively [9]. It is a major staple food crop among pulses and it is mainly grown in the mid and high altitude areas of the country with an elevation ranging from 1800 to 3000 meters above sea level [10]. Most of the reports revealed significant improvements in the yield of faba bean due to chemical fertilizers applications [18, 19]

Socio-economic significance of faba bean
Main constraints for faba bean production or general production constraints
Fertilizer study
Phosphorus
Nitrogen
Sulfur
Plant population and patterns
Intercropping
Crop rotation
Biological nitrogen fixation
Rhizobium inoculation
Findings
Conclusion and future outlook
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call