Abstract

Abstract Coupling models of different dimensions is one of the most important yet under-represented challenges. This paper introduces a new modeling strategy to streamline a more flexible and effective integrated one-dimensional (1D)/two-dimensional (2D) model for floodplains along lowland rivers. The 1D model, utilizing the finite volume method, solves the Saint–Venant equations, while the 2D mesh employs unstructured quadrilateral elements. The two strategies couple the 1D/2D models: direct 1D/2D connection by the law of mass conservation at supernode, and lateral 1D/2D model connection by spillways at riverbank. The coupling strategy in F28 guarantees the water balance and the conservation of momentum at the integrated 1D/2D nodes. The model was applied to the Mekong Delta to address the capacity of hydrodynamic simulations integrating various water infrastructures. Results showed that the developed model has a strong potential to be applied to other lowland rivers worldwide with complex infrastructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call