Abstract
ABSTRACT Multi-reservoir systems that have diverse and conflicting objectives are challenging to design due to their uncertainties, non-linearities, dimensions and conflicts. The operation of multi-reservoir systems is crucial to increasing hydropower production. In this study, we have investigated the application and effectiveness of the new optimization algorithm MOAHA in multi-objective cascade reservoirs with conflicting objectives, and it has been investigated on a case-by-case basis on Karun cascade reservoirs (Karun 3, Karun 1, Masjed Soleyman and Gotvand). The suggested method (MOAHA) output with other optimization algorithms, MOALO, MOGWO and NSGA-II, were compared and evaluation criteria were used to select the best performance. Additionally, we employed the powerful TOPSIS method to determine the most suitable algorithm. The considered restrictions have also been observed. The results indicate that MOAHA's proposed method is better than the compared algorithms in solving optimal reservoir utilization problems in multi-reservoir water resource systems. The reduction of evaporation (losses) from the tank surface by 9% is accompanied by a 15% increase in hydropower energy production. MOAHA, scoring 0.90, is deemed the best algorithm in this study, whereas MOGWO, with a score of 0.10, is regarded as the least effective algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.