Abstract

The polyamine transport system (PTS) is an energy-dependent machinery frequently overactivated in cancer cells with a high demand for polyamines. We have exploited the PTS to selectively deliver a polyamine-containing drug to cancer cells. F14512 combines an epipodophyllotoxin core-targeting topoisomerase II with a spermine moiety introduced as a cell delivery vector. The polyamine tail supports three complementary functions: (a) facilitate formulation of a water-soluble compound, (b) increase DNA binding to reinforce topoisomerase II inhibition, and (c) facilitate selective uptake by tumor cells via the PTS. F14512 is 73-fold more cytotoxic to Chinese hamster ovary cells compared with CHO-MG cells with a reduced PTS activity. A decreased sensitivity of L1210 leukemia cells to F14512 was observed in the presence of putrescine, spermidine, and spermine. In parallel, the spermine moiety considerably enhances the drug-DNA interaction, leading to a reinforced inhibition of topoisomerase II. The spermine tail of F14512 serves as a cell delivery vehicle as well as a DNA anchor, and this property translates at the cellular level into a distinct pharmacologic profile. Twenty-nine human solid or hematologic cell lines were used to characterize the high cytotoxic potential of F14512 (median IC50 of 0.18 micromol/L). Finally, the potent antitumor activity of F14512 in vivo was evidenced with a MX1 human breast tumor xenograft model, with partial and complete tumor regressions. This work supports the clinical development of F14512 as a novel targeted cytotoxic drug and sheds light on the concept of selective delivery of drugs to tumor cells expressing the PTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call