Abstract
Theoretical evidence of the existence of Dirac cones in two-dimensional UB_4 is provided. Dirac cones are created due to the interaction of strongly localized U anisotropic f-orbitals with the delocalized network of B p-orbitals in a bilayer honeycombed lattice. Spin–orbit coupling splits the relativistic electronic states in the vicinity of the Fermi level creating cone-shaped gaped bands. The contribution of f-orbitals to the formation of dispersive Dirac states is clearly determined with several theoretical approximations. U atom provides the exact amount of charge to stabilize the B sublattices creating a heavy-electron based material with reminiscent properties of graphene. The interplay between f- and p-orbitals of U and B atoms, respectively, is revealed as the origin of the itinerant electronic states, defying the paradox of delocalized electrons in a heavy-electron based material. Computed phonon diagram exhibits decoupled acoustic and optic modes arising from U and B atom vibrations, respectively, with frequencies of acoustic modes rather small as compared to optic modes. The dynamical properties of isoelectronic UAl4 and UGa4 are also analyzed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have