Abstract

PRAME (Preferentially expressed antigen of melanoma) is aberrantly expressed in hematological malignancies and may be a useful target for immunotherapy in leukemia. We studied CD8+ T-cell responses to four HLA-A*0201-restricted PRAME-derived epitopes (PRA100, PRA142, PRA300, PRA425) in HLA-A*0201-positive patients with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML) and healthy donors, using PRA300/HLA-A*0201 tetramer staining, intracellular cytokine (IC) assay and ex-vivo and cultured ELISPOT analysis. CD8+ T-cells recognizing PRAME peptides were detected directly ex-vivo in 4/10 ALL, 6/10 AML, 3/10 CML patients and 3/10 donors. The frequency of PRAME-specific CD8+ T-cells was greater in patients with AML, CML and ALL than in healthy controls. All peptides were immunogenic in patients, whilst PRA300 was the only immunogenic peptide in donors. High PRAME expression in patient peripheral blood mononuclear cells was associated with responses to two or more PRAME epitopes (4/7 vs. 0/23 in individuals with low PRAME expression, P = 0.001), suggesting a PRAME-driven T-cell response. In 2 patients studied PRA300/HLA-A*0201+ CD8+T-cells were found to be a mixture of effector and central memory phenotypes. To determine the functional avidity of the PRAME T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of peptide was measured by IC-IFN-γ staining. High-avidity CD8+ T-cells were defined as those capable of producing IFN-γ in response to the lower concentration of peptide (0.1μM), while low-avidity CD8+ T-cells were those that only produced IFN-γ in response to the higher concentration of peptide (10 μM). Both high and low-avidity CD8+ T-cell responses could be detected for all peptides tested (median 1.05, 0.90, 0.52, 0.40 high/lowavidity ratios for PRA100, PRA142, PRA300 and PRA425 respectively). In patients with high PRAME expression (>0.001 PRAME/ABL) low-avidity CD8+ T-cell responses to PRAME peptides were more prominent than high-avidity responses, suggesting selective deletion of high-avidity T-cells. In contrast, in some patients with levels <0.001 PRAME/ABL, we could detect the presence of high-avidity CD8+ T-cell responses to PRAME. PRAME-specific CD8+ T-cells were further characterized by IC staining for IL-2, IL-4 and IL-10 production and CD107a mobilization (as a marker of cytotoxicity). Following stimulation with the relevant PRAME peptide, there was no significant production of IL-2, IL-4 or IL-10, suggesting a Tc1 effector response but no significant CD107a mobilization was detected despite significant CD107a mobilization in the same patient in response to CMVpp65495. This finding suggests that patients with leukemia have a selective functional impairment of PRAME-specific CD8+ T-cells, consistent with PRAME-specific T cell exhaustion. However, PRAME-specific T-cells were readily expanded in the presence of cytokines in short-term cultures in-vitro to produce IFN-γ, suggesting that it may be possible to improve the functional capacity of PRAME-specific T-cells for therapeutic purposes. These results provide evidence for spontaneous T-cell reactivity against multiple epitopes of PRAME in ALL, AML and CML and support the usefulness of PRAME as a target for immunotherapy in leukemia. The predominance of low-avidity PRAME-specific CD8+ T-cells suggests that achievement of a state of minimal residual disease may be required prior to peptide vaccination to augment T-cell immune surveillance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call