Abstract

The hydrodynamics of concurrent gas-liquid downflow through a porous media of fixed bed reactor has been studied experimentally in a range of trickling flow rates. A pilot bed is packed with industrial spherical and extrudate trilobe catalysts. The industrial trilobe catalysts are packed in a bed using two different methods: random close or dense packing and random sock packing. The experiments are performed for single phase in the cases of wet and dry packed beds and for two-phase flow conditions. The comparisons of pressure drops as well as liquid holdup are carried out for the above three different porous media, random close, dense packing and random sock packing. It is shown that the pressure drop of the dense loaded bed is higher than that of spherical particles which have approximately the same porosity. The results also revealed that the bed porosity, shape and contact points of the loaded catalyst have significant effects on the dynamic liquid holdup of the TBRs. Finally, a new correlation was developed for dynamic liquid holdup and pressure drop calculation for trilobe dense and sock catalyst beds and beds which are loaded with spherical particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.