Abstract

Three-dimensional Hopf insulators are a class of topological phases beyond the tenfold-way classification. At the critical point of the transition between two distinct Hopf insulators with rotational symmetry, the band-touching points are point Berry dipoles with two opposite Berry charges overlapping in a mirror-symmetric way, and carry unique Berry curvature structures leading to a special quantization of Berry flux. Close to such Berry-dipole transitions, we find that the extrinsic and intrinsic nonlinear Hall conductivity tensors in the weakly doped regime are characterized by two universal functions of the ratio between doping level and bulk energy gap, and are directly proportional to the change in Hopf invariant across the transition. Our work suggests that the nonlinear Hall effects display a generalized-sense quantized behavior across Berry-dipole transitions, establishing a correspondence between nonlinear Hall effects and Hopf invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.