Abstract

The notions of upper and lower exhausters and coexhausters are discussed and necessary conditions for an unconstrained extremum of a nonsmooth function are derived. The necessary conditions for a minimum are formulated in terms of an upper exhauster (coexhauster) and the necessary conditions for a maximum are formulated in terms of a lower exhauster (coexhauster). This involves the problem of transforming an upper exhauster (coexhauster) into a lower exhauster (coexhauster) and vice versa. The transformation is carried out by means of a conversion operation (converter). Second-order approximations obtained with the help of second-order (upper and lower) coexhausters are considered. It is shown how a secondorder upper coexhauster can be converted into a lower coexhauster and vice versa. This problem is reduced to using a first-order conversion operator but in a space of a higher dimension. The obtained result allows one to construct second-order methods for the optimization of nonsmooth functions (Newton-type methods).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.