Abstract

The notions of upper and lower exhausters represent generalizations of the notions of exhaustive families of upper convex and lower concave approximations (u.c.a., l.c.a.). The notions of u.c.a.'s and l.c.a.'s were introduced by Pshenichnyi (Convex Analysis and Extremal Problems, Series in Nonlinear Analysis and its Applications, 1980), while the notions of exhaustive families of u.c.a.'s and l.c.a.'s were described by Demyanov and Rubinov in Nonsmooth Problems of Optimization Theory and Control, Leningrad University Press, Leningrad, 1982. These notions allow one to solve the problem of optimization of an arbitrary function by means of Convex Analysis thus essentially extending the area of application of Convex Analysis. In terms of exhausters it is possible to describe extremality conditions, and it turns out that conditions for a minimum are expressed via an upper exhauster while conditions for a maximum are formulated in terms of a lower exhauster (Abbasov and Demyanov (2010), Demyanov and Roshchina (Appl Comput Math 4(2): 114---124, 2005), Demyanov and Roshchina (2007), Demyanov and Roshchina (Optimization 55(5---6): 525---540, 2006)). This is why an upper exhauster is called a proper exhauster for minimization problems while a lower exhauster is called a proper one for maximization problems. The results obtained provide a simple geometric interpretation and allow one to construct steepest descent and ascent directions. Until recently, the problem of expressing extremality conditions in terms of adjoint exhausters remained open. Demyanov and Roshchina (Appl Comput Math 4(2): 114---124, 2005), Demyanov and Roshchina (Optimization 55(5---6): 525---540, 2006) was the first to derive such conditions. However, using the conditions obtained (unlike the conditions expressed in terms of proper exhausters) it was not possible to find directions of descent and ascent. In Abbasov (2011) new extremality conditions in terms of adjoint exhausters were discovered. In the present paper, a different proof of these conditions is given and it is shown how to find steepest descent and ascent conditions in terms of adjoint exhausters. The results obtained open the way to constructing numerical methods based on the usage of adjoint exhausters thus avoiding the necessity of converting the adjoint exhauster into a proper one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.