Abstract

The goal of this research was to generate networks of co-expressed genes to explore the genomic responses of Rhizophora mangle L. populations to contrasting environments and to use gene network analysis to investigate their capacity for adaptation in the face of historical and future perturbations and climatic changes. RNA sequencing data were generated for R. mangle samples collected under field conditions from contrasting climate zones in the equatorial and subtropical regions of Brazil. A gene co-expression network was constructed using Pearson’s correlation coefficient, showing correlations among 78,364 transcriptionally coordinated genes. Each region exhibited two distinct network profiles; genes correlated with the oxidative stress response showed higher relative expression levels in subtropical samples than in equatorial samples, whereas genes correlated with the hyperosmotic salinity response, heat response and UV response had higher expression levels in the equatorial samples than in the subtropical samples. In total, 992 clusters had enriched ontology terms, which suggests that R. mangle is under higher stress in the equatorial region than in the subtropical region. Increased heat may thus pose a substantial risk to species diversity at the center of its distribution range in the Americas. This study, which was performed using trees in natural field conditions, allowed us to associate the specific responses of genes previously described in controlled environments with their responses to the local habitat where the species occurs. The study reveals the effects of contrasting environments on gene expression in R. mangle, shedding light on the different abiotic variables that may contribute to the genetic divergence previously described for the species through the use of simple sequence repeats (SSRs). These effects may result from two fundamental processes in evolution, namely, phenotypic plasticity and natural selection.

Highlights

  • Brazilian mangroves represent the third largest area of mangroves in the world, covering 9,600 km2 (Giri et al, 2011)

  • The genetic variability of neutral molecular markers in R. mangle reveals the presence of two large populations in Brazil; one population is found along the northern or equatorial coast, and another extends from the north-eastern extremity of South America to the state of Santa Catarina (SC) along the subtropical Brazilian coast (Pil et al, 2011; Francisco et al, 2018)

  • A single co-expression network was generated based on the expectation maximization (EM) values of all the transcripts from all the samples sequenced in the RNA-Seq experiment

Read more

Summary

Introduction

Brazilian mangroves represent the third largest area of mangroves in the world, covering 9,600 km (Giri et al, 2011). The tree composition (Angiosperms) of mangroves in Brazil is restricted to only six species belonging to the following three genera: Rhizophora, Avicennia, and Laguncularia. These plant species are considered extremophiles since they complete their life cycle in the presence of conditions that are extreme for most plants, such as muddy substrates with a low concentration of oxygen and periodic flooding by the tides, which causes large variations in salinity (Dassanayake et al, 2009). The same pattern of spatial genetic structure is observed in neutral molecular markers in two other mangrove species, Avicennia schaueriana Stapf & Leechman ex Moldenke and Avicennia germinans L., both of which are dispersed by ocean currents (Mori et al, 2015) as well as in one mangrove-associated species, Hibiscus pernambucensis Arruda ex Bartol. (Takayama et al, 2008)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call