Abstract

In this paper we study the tail and the extremal behaviors of stationary solutions of threshold autoregressive (TAR) models. It is shown that a regularly varying noise sequence leads in general to only an O-regularly varying tail of the stationary solution. Under further conditions on the partition, it is shown however that TAR(S,1) models of order 1 with S regimes have regularly varying tails, provided that the noise sequence is regularly varying. In these cases, the finite-dimensional distribution of the stationary solution is even multivariate regularly varying and its extremal behavior is studied via point process convergence. In particular, a TAR model with regularly varying noise can exhibit extremal clusters. This is in contrast to TAR models with noise in the maximum domain of attraction of the Gumbel distribution and which is either subexponential or in ℒ(γ) with γ > 0. In this case it turns out that the tail of the stationary solution behaves like a constant times that of the noise sequence, regardless of the order and the specific partition of the TAR model, and that the process cannot exhibit clusters on high levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.