Abstract
• A series of ionic hydrogels with regulated wrinkling surfaces were fabricated. • These ionic hydrogels exhibited robust mechanical strength and stretchability. • These ionic hydrogels exhibited a heat-accelerated self-healing performance. • Hydrogel capacitive skin sensor exhibited great sensitivity, wide range and durability. The construction of a surface-wrinkled ionic conductive hydrogel with highly stretchable and healable properties for a skin-inspired pressure sensor is desirable yet challenging. Here, a stretching/competitively-coordinating/releasing (SCR) strategy is presented for preparing a self-buckled polyacrylamide/alginate hydrogel (SPAH). Due to its high stretchability, excellent ionic conductivity and programmable wrinkled surfaces, the SPAH can readily work as an ionic conductor in a healable skin-inspired pressure sensor with adaptability and multifunctionality, achieving a wide pressure response range (25–20000 Pa), high sensitivity towards strain (3.19 kPa −1 ), low detection limit (<25 Pa) and excellent durability (>1400 cycles). As a proof-of-concept, a wearable SPAH pressure sensor can adequately monitor finger bending, knee flexion, speaking and breathing, showing high potentials in full-range and sophisticated motion monitoring across the applications involving human-machine interfaces, soft robotics, and artificial intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.