Abstract

The requirement of ionic conductive hydrogels with tailor-made superelasticity and high chain mobility is highly desired while meeting a challenge. Herein, ionic conductive hydrogels with the design of strong-weak response networks were synthesized via the free-radical copolymerization of monomers of 1-methyl-3-(4-vinylbenzyl)imidazolium chloride and sodium 2-acrylamino-2-methylpropanesulfonate in water. The as-formed strong-weak response networks in ionic conductive hydrogels included binary interactions of strong electrostatic forces and weak hydrogen bonds. The electrostatic forces imparted excellent mechanical elasticity, and the hydrogen-bonded interactions served as highly active and reversible networks to dissipate fracture energy during the deformation. Importantly, the resultant ionic conductive hydrogels exhibited high toughness of ∼2205 kJ m-3, satisfying fatigue resistance, and excellent healing efficiency of >90%. Moreover, the tailoring of counterion concentrations in hydrogels by adding various concentrations of inorganic salts could regulate the electrostatic forces within hydrogels as well as the finally mechanical strengths. Ascribing to the combination of large stretchability and large chain mobility, the resultant ionic conductive hydrogels could directly act as a stretchable ionic conductor for the assembly of self-healable and self-adhesive capacitance-type ionic sensors which are capable of detecting large and tiny human activities. This study could offer a promising strategy for the design and manufacturing of emerging ionic conductors with high mechanical elasticity and large segment mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call