Abstract
Extremely Re-rich molybdenite occurs with pyrite in sodic–calcic, sodic–sericitic and sericitic-altered porphyritic stocks of granodioritic–tonalitic and granitic composition in the Sapes–Kirki–Esymi, Melitena and Maronia areas, northeastern Greece. Molybdenite in the Pagoni Rachi and Sapes deposits is spatially associated with rheniite, as well as with intermediate (Mo,Re)S2 and (Re,Mo)S2 phases, with up to 46 wt % Re. Nanodomains and/or microinclusions of rheniite may produce the observed Re enrichment in the intermediate molybdenite–rheniite phases. The extreme Re content in molybdenite and the unique presence of rheniite in porphyry-type mineralization, combined with preliminary geochemical data (Cu/Mo ratio, Au grades) may indicate that these deposits have affinities with Cu–Au deposits, and should be considered potential targets for gold mineralization in the porphyry environment. In the post-subduction tectonic regime of northern Greece, the extreme Re and Te enrichments in the magmatic-hydrothermal systems over a large areal extent are attributed to an anomalous source (e.g., chemical inhomogenities in the mantle-wedge triggered magmatism), although local scale processes cannot be underestimated.
Highlights
Rhenium has an average concentration of
This study evaluates earlier data on Re-enriched molybdenites from porphyry-type deposits in northeastern Greece, presents new information concerning recent molybdenite discoveries, and highlights the reasons for Re-enrichment
Molybdenite with low Re:Mo ratios are associated with Mo-dominant mineralizing systems, which are genetically related to more evolved granites, whereas the highest atomic Re:Mo ratio occurs in molybdenite in Cu–Au deposits
Summary
Rhenium has an average concentration of
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have