Abstract
• Functionalized CQDs were synthesized, which showed monodispersity in solvent. • Coulomb-blockade effect of CQDs was utilized to increase the E b of PEI matrix. • The composite with 0.5 wt% CQDs exhibited a high U e of 10.66 J/cm 3 at 600 kV/mm. There is an urgent need for dielectric capacitors with high energy density and efficiency with the rapid progress of power electronic devices. Inorganic/organic composites were once considered as a potential candidate for dielectrics. However, the inevitable defects induced by the inorganic fillers always lead to the decreased breakdown strength and limited energy density and efficiency. In this work, carbon quantum dots (CQDs) with abundant functional groups were synthetized and introduced into linear dielectric polyethyleneimine (PEI) matrix. Due to the unique Coulomb-blockade effect of quantum dots, the movement of carriers can be hindered under the applied electric field, leading to the improvement of breakdown strength. Compared with most of the reported nanocomposites with high loading of fillers, the nanocomposites in this work with extremely low loading of CQDs exhibit obviously enhanced performance. The nanocomposite with 0.5 wt% CQDs exhibits a high discharge energy density of 10.66 J/cm 3 and efficiency of 88.3% at 600 kV/mm, corresponding to a 62.3% improvement over that of PEI (6.57 J/cm 3 at 490 kV/mm). This work provides an effective strategy to break down the long-standing contradiction between the enhancement of dielectric constant and the reduced in breakdown strength. The film dielectrics with extremely low loading of fillers contributing to enhanced energy density and high energy efficiency is very important for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.