Abstract
AbstractWe consider the quadratic family of maps given by fa(x)=1−ax2 with x∈[−1,1], where a is a Benedicks–Carleson parameter. For each of these chaotic dynamical systems we study the extreme value distribution of the stationary stochastic processes X0,X1,… , given by Xn=fan, for every integer n≥0, where each random variable Xn is distributed according to the unique absolutely continuous, invariant probability of fa. Using techniques developed by Benedicks and Carleson, we show that the limiting distribution of Mn=max {X0,…,Xn−1} is the same as that which would apply if the sequence X0,X1,… was independent and identically distributed. This result allows us to conclude that the asymptotic distribution of Mn is of type III (Weibull).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.