Abstract
Fractional Brownian motion is a self-affine, non-Markovian, and translationally invariant generalization of Brownian motion, depending on the Hurst exponent H. Here we investigate fractional Brownian motion where both the starting and the end point are zero, commonly referred to as bridge processes. Observables are the time t_{+} the process is positive, the maximum m it achieves, and the time t_{max} when this maximum is taken. Using a perturbative expansion around Brownian motion (H=1/2), we give the first-order result for the probability distribution of these three variables and the joint distribution of m and t_{max}. Our analytical results are tested and found to be in excellent agreement, with extensive numerical simulations for both H>1/2 and H<1/2. This precision is achieved by sampling processes with a free end point and then converting each realization to a bridge process, in generalization to what is usually done for Brownian motion.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have