Abstract

The multivariate Hüsler–Reiß copula is obtained as a direct extreme-value limit from the convolution of a multivariate normal random vector and an exponential random variable multiplied by a vector of constants. It is shown how the set of Hüsler–Reiß parameters can be mapped to the parameters of this convolution model. Assuming there are no singular components in the Hüsler–Reiß copula, the convolution model leads to exact and approximate simulation methods. An application of simulation is to check if the Hüsler–Reiß copula with different parsimonious dependence structures provides adequate fit to some data consisting of multivariate extremes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.