Abstract

Offshore wind is becoming the way forward for green energy harnessing worldwide. However, frequent typhoons are a major constraint for the development of offshore wind power for some regions in Asia and North America. Typhoons may pose a huge challenge to offshore wind farm development in southern China. In this paper, a fully-coupled analysis was carried out for a 10 MW large-scale monopile offshore wind turbine (OWT) using SIMO-Riflex-Aerodyn (SRA) code. The response characteristics of the OWTs in different typhoon regions are investigated based on the measured typhoon conditions in China. The effect of aerodynamic damping on the response and the load effect is analyzed in detail. Two different distribution methods are used to statistically extrapolate the response value and get the short-term extreme response. Cumulative linear fatigue damage is evaluated by the rain-flow counting method to explore the possible failure modes of large wind turbines during typhoons. The results show that aerodynamic loads play an important role in large monopile OWTs during high wind speeds in parked conditions. The extreme response and fatigue analyses from this study indicate that fatigue is a dominant failure mode for the large OWT tower during typhoons, while buckling is unlikely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call