Abstract

This paper presents an improved design of reinforced concrete elements (RCE) subjected to flexure and eccentric compression or tension. The disadvantages of the traditional deformational strength criterion of concrete as confirmed by experimental data are noted. Emphasis is put on the difficulties in determining ultimate concrete strain experimentally, as well as in accounting for the influence of many conditions and factors. To remove these disadvantages, the extreme strength criterion (ESC) is proposed and used. The ESC expresses the determination of the maximum load parameter as a function of the extreme fibre compression compressive strain ecu in a RCE section at failure. On the basis of the ESC, a new general design method is developed for RCEs under bending and eccentric compression/tension. In addition to the constitutive relations for concrete and steel, the plane sections hypothesis and the balance equations, the proposed method includes the ESC, which replaces the traditionally used concrete str...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.