Abstract

We study the effect of remote hydrogen plasma on graphene deposited on SiO₂. We observe strong monolayer selectivity for reactions with plasma species, characterized by isotropic hole formation in the basal plane of monolayers and etching from the sheet edges. The areal density of etch pits on monolayers is 2 orders of magnitude higher than on bilayers or thicker sheets. For bilayer or thicker sheets, the etch pit morphology is also quite different: hexagonal etch pits of uniform size, indicating that etching is highly anisotropic and proceeds from pre-existing defects rather than nucleating continuously as on monolayers. The etch rate displays a pronounced dependence on sample temperature for monolayer and multilayer graphene alike: very slow at room temperature, peaking at 400 °C and suppressed entirely at 700 °C. Applying the same hydrogen plasma treatment to graphene deposited on the much smoother substrate mica leads to very similar phenomenology as on the rougher SiO₂, suggesting that a factor other than substrate roughness controls the reactivity of monolayer graphene with hydrogen plasma species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.