Abstract
The spectacular progress of electron and heavy-ions acceleration driven by ultra-short high-power laser has opened the way for new methods of investigations in nuclear physics and related fields. On the other hand, upshifting the photon energies of a high repetition TW-class laser through inverse Compton scattering on electron bunches classically accelerated, a high-flux narrow bandwidth gamma beam can be produced. With such a gamma beam in the 1-20 MeV energy range and a two-arms 10-PW class laser system, the pillar of Extreme Light Infrastructure to be built in Bucharest will focus on nuclear phenomena and their practical applications. Nuclear structure, nuclear astrophysics, fundamental QED aspects as well as applications in material and life sciences, radioactive waste management and homeland security will be studied using the high-power laser, the gamma beam or combining the two. The article includes a general description of ELI-Nuclear Physics (ELI-NP) facility, an overview of the Physics Case and some details on the few, most representative proposed experiments.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have