Abstract

Classification methods has become increasingly popular for biomedical and bioinformatical data analysis. However, due to the difficulty of data acquisition, sometimes we could only obtain small-scale datasets which may leads to unreasonable generalization performances. For SVM-like algorithms, we could resort to Large Margin theory to find out solutions for such dilemma. Recent studies on large margin theory show that, besides maximizing the minimum margin of a given training dataset, it is also necessary to optimization the margin distribution to boost the overall generalization ability. Correspondingly, a novel SVM-like algorithm called Large Margin Distribution Machine (LDM) realizes this idea by maximizing the average of margin and minimizing the variance of margin simultaneously. And a series of applications has been reported thereafter. There is another well-known machine learning algorithm called Extreme Learning Machine (ELM) which shares similar framework with SVM. It is believed in this paper ELM could also benefit from the virtues of margin distribution optimization. Bearing this in mind, a novel algorithm called Extreme Large Margin Distribution Machine(ELDM) is proposed in this paper by bridging the advantages of ELM and LDM. And an efficient extension of ELDM for multi-class classifications under One vs. All Scheme is proposed subsequently. Finally, the experiment results on both benchmark datasets and biomedical classification datasets show the effectiveness of our proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call