Abstract
Genuinely homogeneous metamaterials, which may be characterized by local effective constitutive relations, are required for many spectacular metamaterial applications. Such metamaterials have to be made of meta-atoms, i.e., subwavelength resonators, which exhibit only electric and or magnetic dipole and negligible higher-order multipolar polarizabilities in the spectral range of interest. Here, we show that these desired meta-atoms can be designed by exploiting the extreme coupling regime. Appropriate meta-atoms are identified by performing a multipole analysis of the field scattered from the respective meta-atom. To design those particular meta-atoms it is important to disclose the frequency and angular-dependent polarizability of both dipole moments. We demonstrate the applicability of a purely analytical model to accurately calculate for a normally incident plane wave reflection and transmission from meta-surfaces made of periodically arranged meta-atoms. With our work we identify a possible route towards the engineering of artificial materials while only considering the response from its constituents. Our approach is generally applicable to all spectral domains and can be used to evaluate and design metamaterials made from different constituting materials, e.g., metals, dielectrics, or semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.