Abstract
The common definition of the Brewster angles for dielectric and magnetic achiral materials are the angles at which the vertically and horizontally polarized reflection coefficients vanish. We examine broader definitions of the Brewster conditions for waves that are incident on a free-space-chiral interface. Besides the common definition, the Brewster angles have been defined as the angles at which the polarizations of the reflected waves are independent of the polarizations of the incident waves. We consider total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral medium planar interface. In this case we determine the polarization of the incident wave for which the reflected vertically and horizontally polarized waves vanish simultaneously. Thus with this definition of the Brewster conditions the polarization of the reflected wave is undefined. The conditions for the excitation of surface waves are considered. The characteristic polarizations that are the same for the reflected and incident waves are also examined subject to the Brewster conditions. Potential applications of this analysis are to experimentally determine the chiral or geotropic measure of the medium and to identify and characterize biological and chemical materials through their optical activity in real time. Several independent measurements can be taken with the same polarimetric instrument to avoid false identifications. Since measurements can be conducted in the reflection mode they can be nonintrusive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.