Abstract

The matching energy is defined as the sum of the absolute values of the zeros of the matching polynomial of a graph, which is proposed first by Gutman and Wagner [The matching energy of a graph, Discrete Appl. Math. 160 (2012) 2177--2187]. And they gave some properties and asymptotic results of the matching energy. In this paper, we characterize the trees with $n$ vertices whose complements have the maximal, second-maximal and minimal matching energy. Further, we determine the trees with a perfect matching whose complements have the second-maximal matching energy. In particular, show that the trees with edge-independence number number $p$ whose complements have the minimum matching energy for $p=1,2,\ldots, \lfloor\frac{n}{2}\rfloor$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.