Abstract

The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\lfloor k/3 \rfloor}$ lower bound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call