Abstract

In this paper, we give a class of graphs that do not admit disjoint maximum and maximal independent (MMI) sets. The concept of inverse independence was introduced by Bhat and Bhat in [Inverse independence number of a graph, Int. J. Comput. Appl. 42(5) (2012) 9–13]. Let [Formula: see text] be a [Formula: see text]-set in [Formula: see text]. An independent set [Formula: see text] is called an inverse independent set with respect to [Formula: see text]. The inverse independence number [Formula: see text] is the size of the largest inverse independent set in [Formula: see text]. Bhat and Bhat gave few bounds on the independence number of a graph, we continue the study by giving some new bounds and exact value for particular classes of graphs: spider tree, the rooted product and Cartesian product of two particular graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.