Abstract

The steadily growing traffic loading may become a hazard for the bridge safety. Compared to short and medium span bridges, long-span bridges suffer from simultaneous presence of multiple vehicle loads. This study presents an approach for extrapolating probabilistic extreme effects on long-span bridges based on weigh-in-motion (WIM) measurements. Three types of stochastic traffic load models are simulated based on the WIM measurements of a highway in China. The level-crossing rate of each stochastic traffic load is evaluated and integrated for extrapolating extreme traffic load effects. The probability of exceedance of a cable-stayed bridge is evaluated considering a linear traffic growth model. The numerical results show that the superposition of crossing rates is effective and feasible to model the probabilistic extreme effects of long-span bridges under the actual traffic loads. The increase of dense traffic flows is sensitive to the maximum load effect extrapolation. The dense traffic flow governs the limit state of traffic load on long-span bridges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.