Abstract

The traffic load has grown significantly in recent years, which might be a threat for the service safety of existing bridges. Thus, it is an urgent task to assess the actual traffic load effects on bridges, considering actual heavy traffic load instead of design traffic load. This study presents a framework for extrapolating maximum dynamic traffic load effects on large bridges using site-specific traffic monitoring data. The framework involves vehicle–bridge interaction analysis and probabilistic modelling of extreme values. The weigh-in-motion measurements of a busy highway in China were collected for stochastic traffic load modelling. Case studies of two long-span cable-supported bridge based on the weigh-in-motion measurements were conducted to demonstrate the effectiveness of the proposed framework. It is demonstrated that Rice’s level-crossing approach can capture both dynamic and probabilistic characteristics of the traffic load effects. The root-mean-square displacement of the cable-stayed bridge follows a C-type distribution, and the one for the suspension bridge follows an M-type distribution, which is associated with the first-order mode shapes of the two types of bridges. The amplification factors for the cable-stayed bridge and the suspension bridge are 5.9% and 3.6%, respectively. The numerical analysis indicates that the dynamic effect for extrapolation is weaker with the increase in bridge span length, but the effect of traffic volume growth will be more significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.