Abstract

Surface plasmons supported by metallic nanostructures interact strongly with light and confine it into subwavelength volumes, thus forcing the corresponding electric field to vary within nanoscale distances. This results in exceedingly large field gradients that can be exploited to enhance the quadrupolar transitions of quantum emitters located in the vicinity of the nanostructure. Graphene nanostructures are ideally suited for this task, since their plasmons can confine light into substantially smaller volumes than equivalent excitations sustained by conventional plasmonic nanostructures. Furthermore, in addition to their geometric tunability, graphene plasmons can also be efficiently tuned by controlling the doping level of the nanostructure, which can be accomplished either chemically or electrostatically. Here, we provide a detailed investigation of the enhancement of the field gradient in the vicinity of different graphene nanostructures. Using rigorous solutions of Maxwell’s equations, as well as an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call