Abstract

We show that free electrons can efficiently excite plasmons in doped graphene with probabilities in the order of one per electron. More precisely, we predict multiple excitations of a single confined plasmon mode in graphene nanostructures. These unprecedentedly large electron-plasmon couplings are explained using a simple scaling law and further investigated through a general quantum description of the electron-plasmon interaction. From a fundamental viewpoint, multiple plasmon excitations by a single electron provide a unique platform for exploring the bosonic quantum nature of these collective modes. Not only does our study open a viable path toward multiple excitation of a single plasmon mode by a single electron, but it also reveals electron probes as ideal tools for producing, detecting, and manipulating plasmons in graphene nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.