Abstract
Nanomechanical resonators provide a compelling platform to investigate and exploit phase transitions coupled to mechanical degrees of freedom because resonator frequencies and quality factors are exquisitely sensitive to changes in state, particularly for discontinuous changes accompanying a first-order phase transition. Correlated scanning fiber-optic interferometry and dual-beam Raman spectroscopy were used to investigate mechanical fluctuations of vanadium dioxide (VO2) nanowires across the first order insulator to metal transition. Unusually large and controllable changes in resonator frequency were observed due to the influences of domain wall motion and anomalous phonon softening on the effective modulus. In addition, extraordinary static and dynamic displacements were generated by local strain gradients, suggesting new classes of sensors and nanoelectromechanical devices with programmable discrete outputs as a function of continuous inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.