Abstract
The dissection of murine neonatal bile ducts has been described as difficult. The main aim of the described standard operating procedure is the isolation of the extrahepatic bile duct (EBD) in mouse neonates without damaging the bile duct during preparation. Because of its exceptionally close preparation compared to the cholangiocytes cell line and harvesting of the entire extrahepatic bile duct system (EBDS), the described approach is extremely useful in researching animal models of newborn bile duct disorders, such as biliary atresia. After euthanasia, the peritoneal cavity was accessed, and the bile duct system, duodenum, and liver were extracted with the unique En-bloc-Resection (EbR). The extracted sample is placed on a foam mat, and the EBD is dissected from contaminating cells atraumatically without necessary touch. The dissection of the entire EBDS is a significant advantage of this method. Caution must be taken due to the small size and amount of bile duct tissue. Using the described technique, there is no damage to the cholangiocytes. Further, the purity of the technique is reproducible (n = 10). Therefore, optimally comparable samples can be harvested. Furthermore, no bile duct tissue is harmed, because any contact with the bile duct system can be avoided during preparation, leaving the bile fluid inside the gall bladder. Most importantly, while performing the final gall bladder and bile duct dissection, atraumatic microinstruments were used only slightly lateral of the bile duct without squeezing it. This is the key to a clean and intact sample, and essential for further histological investigation or the isolation of cholangiocytes. To summarize, the described innovative dissection technique enables especially inexperienced operators with the necessary equipment to isolate the EBDS as cleanly as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.