Abstract

Biliary atresia is an important cause of neonatal obstructive jaundice in which there is inflammation, sclerosis and eventual obliteration of the bile duct system. Its onset may be antenatal, affecting the normal development of the biliary system. The intrahepatic biliary system is derived from the ductal plate, a sheath of cuboidal epithelium that appears at the hepatocyte-mesenchymal junction around the portal vein branches at 6 weeks gestation. This epithelial structure is moulded into a network of tubular bile ducts by the proliferating mesenchyme. Certain portions of the ductal plate are selected to become definitive bile ducts, while redundant biliary epithelium is deleted. The molecular dynamics controlling the intra-uterine development of the biliary system in humans are not yet clearly understood. Transforming growth factor-beta 1 is a cytokine that stimulates mesenchymal proliferation and inhibits epithelial growth, and has been shown to be important in organogenesis. In the present study, the pattern of TGF beta 1 peptide immunolocalization was investigated with the aid of computerized image analysis, in normal human bile duct development and in biliary atresia. TGF beta 1 peptide was detected within hepatocytes and ductal plate epithelium from 7 weeks gestation; increased TGF beta 1 immunoreactivity was present within the epithelium of developing bile ducts at 13 weeks gestation, and apical polarization of the cytokine was observed from 16 weeks gestation. In biliary atresia, the TGF beta 1 immunoreactivity pattern within the bile duct structures at the porta hepatis and within intrahepatic portal tracts resembled that of the primitive ductal plate, and there was no significant apical polarization. This may indicate a developmental arrest in the normal ductal plate remodelling process in biliary atresia, and suggests an underlying epithelial-mesenchymal interactive disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.