Abstract

Hippocampal place cells are known to have a key role in encoding spatial information. Aversive stimuli, such as predator odor, evoke place field remapping and a change in preferred firing locations. However, it remains unclear how place cells use positive or negative experiences to remap. We investigated whether CA1 place cells, recorded from behaving rats, remap randomly or whether their reconfiguration depends on the perceived location of the aversive stimulus. Exposure to trimethylthiazoline (TMT; an innately aversive odor), increased the amplitude of hippocampal β oscillations in the two arms of the maze in which TMT exposure occurred. We found that a population of place cells with fields located outside the TMT arms increased their activity (extrafield spiking) in the TMT arms during the aversive episodes. Moreover, in the subsequent post-TMT recording, these cells exhibited a significant shift in their center of mass (COM) towards the TMT arms. The induction of extrafield plasticity was mediated by the basolateral amygdala complex (BLA). Photostimulation of the BLA triggered aversive behavior, synchronized hippocampal local field oscillations, and increased the extrafield spiking of the hippocampal place cells for the first 100 ms after light delivery. Optogenetic BLA activation triggered an increase in extrafield spiking activity that was correlated with the degree of place field plasticity. Furthermore, BLA-mediated increase of the extrafield activity predicts the degree of subsequent field plasticity. Our findings demonstrate that that the remapping of hippocampal place cells during aversive episodes is not random but it depends on the location of the aversive stimulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call