Abstract
Desktop 3D printers that operate by the fused deposition modeling (FDM) mechanism are known to release numerous hazardous volatile organic compounds (VOCs) during printing, including some with potential carcinogenic effects. Operating in a similar manner to FDM 3D printers, 3D pens have gained popularity recently from their ability to allow users to effortlessly draw in the air or create various 3D printed shapes while handling the device like a pen. In contrast to numerous modern 3D printers, 3D pens lack their own ventilation systems and are often used in settings with minimum airflow. Their operation makes users more vulnerable to VOC emissions, as the released VOCs are likely to be in the breathing zone. Consequently, monitoring VOCs released during the use of 3D pens is crucial. In this study, VOCs liberated while extruding acrylonitrile butadiene styrene (ABS) filaments from a 3D pen were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME was investigated using the traditional fiber and Arrow geometries with the DVB/Carbon WR/PDMS sorbent while four different brands of ABS filaments—Amazon Basics, Gizmodork, Mynt 3D, and Novamaker—were used with the 3D pen. Heatmap analysis showed differentiation among these brands based on the liberated VOCs. The nozzle temperature and printing speed were found to affect the number and amount of released VOCs. This study goes a step further and presents for the first time a comparison between 3D pen and a desktop 3D printer based on liberated VOCs. Interestingly, the findings reveal that the 3D pen releases a greater number and amount of VOCs compared to the printer. The amounts of liberated VOCs, as indicated by the corresponding chromatographic peak areas, were found to be 1.4 to 62.6 times higher for the 3D pen compared to the 3D printer when using SPME Arrow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.