Abstract
Three-dimensional printing (3DP) is one of the rapidly growing additive manufacturing (AM) technologies due to its ability to print biocompatible polymeric scaffolds directly. Fused Deposition Modelling (FDM), one of the many 3D printing methods, uses specialized printers in which the extruded material is deposited, layer after layer, in the desired shape. This method for scaffold fabrication is widely applied to various types of scaffolds due to the precise control it offers over the scaffold architecture at the micron-level. In the past, many 3D scaffold designs have been fabricated to explore the mechanical and biological viability of a 3D printed Polylactic acid (PLA) scaffold as a construct which could support cellular life. However, all AM approaches require a computer-aided design (CAD) file, from which the complex shapes are read via a 3D scanner. Moreover, the commercial 3D printer is expensive as compared to the 3D pens. This study aims to compare the mechanical properties of the scaffolds fabricated by using a 3D printer and a 3D pen. A 3D pen can perform the same functions as that of a 3D printer, with the advantage being that no CAD files are required. 3D pens are cheaper than 3D printers and lie in the price range of 15 USD to 150 USD. They allow for higher flexibility and creativity, to suit the desired application and consume lesser time for fabrication. Compression testing was conducted on the 3D printed scaffolds which were printed using a 3D printer and 3D pen. The bulk and surface chemistry were characterized by using Fourier Transform Infrared Spectroscopy (FTIR). The crystallinity, morphology and glass transition temperature after processing, were evaluated by Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC). Key differences between the samples in terms of compressive strength were found and reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.