Abstract

The re-extraction of bioactive compounds from Chinese herb residues is significant for the maximum utilization of biomass resources. However, conventional alcoholic and aqueous solvents are unsuitable for recovering those compounds. In this study, 14 deep eutectic solvents (DESs) were used to improve the efficiency of flavonoid extraction from Glycyrrhiza residues. The maximal total extraction rate (10.68 mg/g) for four flavonoids (liquiritin, isoliquiritin, liquiritigenin, and isoliquiritigenin) was achieved using choline chloride-glycolic acid as the DES under optimal conditions. The extraction rate was 83.03 % higher than that by 60 % ethanol, a traditional solvent. Analysis of the associated molecular mechanism based on density functional theory showed that interactions between the solvent and liquiritin were dominated by hydrogen bonds followed by Van der Waals forces, whereas the bonding between the solvent and liquiritigenin only involved Van der Waals forces, thereby verifying the significance of the strength of hydrogen bonding in the DES-flavonoid extraction process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call