Abstract

The aluminum tolerance of Tamba black soybean (Glycine max cv. Tamba) is closely related to organic acid secretion mechanisms. The gene responsible for this tolerance in this variety (GmFER84) is extracted from lysates of soybean root tips using silylated Fe3O4 nanomagnetic beads. GmFER84 (Glycine max XP 003540203.1) is a stable protein. Tobacco genetically transformed with GmFER84 using an Agrobacterium-mediated transformation was tested for aluminum tolerance. Citrate synthase and citric acid secretion in the roots of transgenic tobacco prove to be significantly higher than those of wild tobacco, and the antioxidant properties of transgenic tobacco are also substantially increased. Research on GmFER84 may enable further agronomic development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call