Abstract

An aqueous two-phase system was developed to extract anthocyanins present in the fruit residue during juice production from the fruit of Vaccinium uliginosum Linn. A maximum partition coefficient of 10.67 and a recovery of 96.09% for anthocyanins could be obtained using an extraction system consisted of 30% (w/w) ethanol and 19% ammonium sulfate. Compared with the traditional extraction using acidified ethanol, the novel aqueous two-phase extraction could not only yield a much higher concentration of anthocyanins, save more ethanol, energy, and time, but also decrease impurities in extract, e.g. proteins and sugars by 58% and 66%, respectively. AB-8 macroporous resin was applied to the purification of anthocyanins. A novel and simple separation technique for anthocyanins was developed by integrating aqueous two-phase extraction and macroporous resin column chromatography. This new technology might be a suitable for other bioactive natural products on industrial scale.

Highlights

  • In the past decade anthocyanins have been found as healthpromoting ingredients in many fruits and vegetables [1,2]

  • Partition behavior and stability of anthocyanins were studied in aqueous twophase system (ATPS) employing ethanol and different phase forming salts

  • An aqueous two-phase system composed of hydrophilic solvent and an inorganic salt, especially ethanol and ammonium sulfate, is suitable for the extraction of anthocyanins from V. uliginosum residue

Read more

Summary

Introduction

In the past decade anthocyanins have been found as healthpromoting ingredients in many fruits and vegetables [1,2]. Anthocyanins are flavonoid pigments with a flavylium cation structure described as a C6-C3-C6 skeleton [1,4]. They play a vital role in the prevention of neuronal and cardiovascular illnesses, cancer and diabetes due to their antioxidant property [1,2]. Anthocyanins, which are present mainly in the peel of V. uliginosum, constitute the most important pigments of the vascular plants [5]. They are harmless, dissolved in aqueous media, and suitable natural water-soluble colorants

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.