Abstract
The present study is first of its kind that focuses upon the extraction of bromelain from pineapple core waste and stabilising it as insoluble cross-linked aggregates. The influence of process variables such as the choice of precipitant, type of cross-linker, concentration of cross-linker and the reaction time for cross-linking step was investigated upon the activity recovery of bromelain cross-linked aggregates. The optimization of this biocatalyst preparation specifically recovered 87% of the enzymatic activity available in pineapple core waste by ammonium sulphate (60%, w/v) precipitation followed by cross-linking for 4 h with 80 mM glutaraldehyde. Cross-linked bromelain aggregates were thermally more stable and exhibited higher pH stability in comparison to free bromelain. The cross-linked bromelain aggregates exhibited higher operational stability in different organic solvents at 4 °C. The highest operational stability (% stability given in parenthesis) was observed in acetone (100%) followed by hexane (53.6%), ethyl acetate (39.6%), ethanol (32.5%) and chloroform (14.9%). The kinetic studies revealed higher Km value (5.45 mM) after the formation of cross-linked bromelain aggregates as compared to free bromelain (5.04 mM) with almost similar Vmax values. Cross-linked bromelain aggregates also showed significant reusability characteristics with an activity retention of >85% after 5-time cycles. Such recyclability of bromelain cross-linked aggregates could lead to potential industrial applications in both food and non-food sector. In addition, the present extraction method avoids costs related to purification and expensive immobilization carriers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have