Abstract
Hom–Lie algebras are generalizations of Lie algebras that arise naturally in the study of nonassociative algebraic structures. In this paper, the concepts of solvable and nilpotent Hom–Lie algebras are studied further. In the theory of groups, investigations of the properties of the solvable and nilpotent groups are well‐developed. We establish a theory of the solvable and nilpotent Hom–Lie algebras analogous to that of the solvable and nilpotent groups. We also provide examples to illustrate our results and discuss possible directions for further research.Dedicated to Al Farouk School & Kinder garten-Irbid-Jordan
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.