Abstract

Abstract The seasonal impacts of the dominant sea surface temperature (SST) modes to North American climate are assessed comprehensively in observations using the multivariate generalized equilibrium feedback assessment (GEFA) method. The GEFA method is first validated before applying it to observations. Impacts of each individual SST mode are quantified and the associated mechanisms are discussed. Four critical SST modes for North American climate are found: the ENSO mode, Indian Ocean Basin (IOB) mode, North Pacific first empirical orthogonal function (EOF) mode, and tropical Atlantic second EOF mode. The impacts of the ENSO mode are consistent with previous studies qualitatively, while the impact strength is further quantified here. The IOB mode has a strong influence on surface air temperature across North America, and it is demonstrated for the first time that its impact strength might even exceed that of ENSO during both winter and summer. The IOB mode also affects the year-round precipitation. A deeper understanding of the impact of North Pacific SSTs on wintertime surface air temperature is achieved: namely, positive SST anomalies in the Kuroshio Extension region correspond to colder (warmer) air in western (eastern) North America. The tropical Atlantic has a more significant influence on North American precipitation than does the extratropical Atlantic, with colder than normal tropical North Atlantic SSTs supporting wetter conditions across much of the United States, especially during autumn. Because of the linearity of GEFA, the total impacts of multiple SST modes can be obtained by the linear combination of each individual mode's impact. The GEFA method is a potentially powerful tool for seasonal climate prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.