Abstract

We consider the problem of inferring meaningful spatial information in networks from incomplete information on the connection intensity between the nodes of the network. We consider two spatially distributed networks: a population migration flow network within the US, and a network of mobile phone calls between cities in Belgium. For both networks we use the eigenvectors of the Laplacian matrix constructed from the link intensities to obtain informative visualizations and capture natural geographical subdivisions. We observe that some low order eigenvectors localize very well and seem to reveal small geographically cohesive regions that match remarkably well with political and administrative boundaries. We discuss possible explanations for this observation by describing diffusion maps and localized eigenfunctions. In addition, we discuss a possible connection with the weighted graph cut problem, and provide numerical evidence supporting the idea that lower order eigenvectors point out local cuts in the network. However, we do not provide a formal and rigorous justification for our observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.