Abstract
The fast and accurate extraction of plastic greenhouses over large areas is important for environmental and agricultural management. Traditional spectral index methods and object-based methods can suffer from poor transferability or high computational costs. Current deep learning-based algorithms are seldom specifically aimed at extracting plastic greenhouses at large scales. To extract plastic greenhouses at large scales with high accuracy, this study proposed a new deep learning-based network, U-FDS Net, specifically for plastic greenhouse extraction over large areas. U-FDS Net combines full-scale dense connections and adaptive deep supervision and has strong future fusion capabilities, allowing more accurate extraction results. To test the extraction accuracy, this study compiled new greenhouse datasets covering Beijing and Shandong with a total number of more than 12,000 image samples. The results showed that the proposed U-FDS net is particularly suitable for complex backgrounds and reducing false positive conditions for nongreenhouse ground objects, with the highest mIoU (mean intersection over union) an increase of ~2%. This study provides a high-performance method for plastic greenhouse extraction to enable environmental management, pollution control and agricultural plans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have