Abstract
This work introduces a modal testing and analysis results of the mock-up for a layered stone pagoda. The pagoda has been horizontally excited by an impact hammer. As to the measured acceleration time responses, the first five lower mode shapes and natural frequency are extracted by the TDD technique. It is observed that the time delay of a shear wave occurs through friction surfaces. Such phenomena cannot be described by using the traditional analytical models such as a continuum cantilever beam model or a discrete shear building model. However, the time delay typically affects only the phases of the pagoda system. The frequencies of the pagoda system are not affected by such time delay. It is found in the first time that the layered stone pagoda system has a set of closely placed modes in near of natural frequency. It is believed that such modes are due to the friction characteristics in friction surfaces. Based on the stick-slip friction model, it seems that the one of the closely placed mode can be a self-excited one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Earthquake Engineering Society of Korea
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.