Abstract

Neural interfacing has played an essential role in advancing our understanding of fundamental movement neurophysiology and the development of human-machine interface. However, direct neural interfaces from brain and nerve recording are currently limited in clinical areas for their invasiveness and high selectivity. Here, we applied the surface electromyogram (EMG) in studying the neural control of movement and proposed a new non-invasive way of extracting neural drive to individual muscles. Sixteen subjects performed isometric contractions to complete six hand tasks. High-density surface EMG signals (256 channels in total) recorded from the forearm muscles were decomposed into motor unit firing trains. The location of each decomposed motor unit was represented by its center of gravity and was put into clustering for distinct muscle regions. All the motor units in the same cluster served as a muscle-specific motor pool from which individual muscle drive could be extracted directly. Moreover, we cross-validated the self-clustered muscle regions by magnetic resonance imaging (MRI) recorded from the subjects' forearms. All motor units that fall within the MRI region are considered correctly clustered. We achieved a clustering accuracy of 95.72% ± 4.01% for all subjects. We provided a new framework for collecting experimental muscle-specific drives and generalized the way of surface electrode placement without prior knowledge of the targeting muscle architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.