Abstract

In 1985, the mining company Luossavaara-Kiirunavaara Aktiebolag collected airborne very-low-frequency (VLF) data in northern Sweden. The operators stored only the vertical component and the total magnetic field, which at that time were believed to be sufficient for qualitative interpretation. Therefore, the data could not be directly used for quantitative tensor VLF processing and inversion. To avoid the costs of resurveying, we have developed a novel technique to estimate the tippers from the measured VLF data by computing anomalous and normal parts of the horizontal components of the magnetic field from two transmitters separately. Retrieval of the normal horizontal components was possible because one component of the horizontal magnetic field was used as the phase reference during the measurements. Additionally, we have determined how the approximate apparent resistivity suitable for data visualization can be computed from the components of the magnetic field assuming an average normal resistivity of the subsurface. Maps of apparent resistivity combined with topography show a clear correlation between high topography and high resistivity, whereas conductive zones are found in valleys in between. More importantly, the 3D model inverted from the calculated tippers shows excellent agreement with a map of the surface geology. Based on this comparison, some less resistive zones can be related to fluids in fractures and others can be related to mineralized contact zones. We suggest to focus further exploration on conductive zones surrounding areas with basaltic composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call